
The Crystal and Molecular Structure of 3-Azidotropone

By D. W. J. CRUICKSHANK, G. FILIPPINI, and O. S. MILLS*†

(Departments of Chemistry, †University of Manchester M13 9PL and U.M.I.S.T.)

Summary 3-Azidotropone contains an accurately planar seven-membered ring although the individual carboncarbon bonds show alternation in lengths.

As part of an extensive study of the structure of tropones, metal π -complexes thereof, and related compounds, we have undertaken the X-ray analysis of 3-azidotropone (I). Preliminary bond length data for 4,5-benzotropone¹ (II) and dibenzotropone² (III) indicate both an alternation of carbon-

carbon distances and non-planarity of the tropone nucleus. Electron diffraction analysis³ of tropone itself, and the X-ray analyses of 2-chlorotropone⁴ (IV) and of tropolone⁵(V), on the other hand, suggest a planar seven-membered ring. Although earlier suggestions that the participating form (B) was important enough to induce both planarity and aromaticity into tropone, recent calculations^{6,7} suggest an almost total lack of resonance stabilisation and predict that the bond lengths will correspond alternately to near single and near double bonds.

In anticipation of a study of tropone itself (the structure evaluation of which is not simple⁸), we chose to examine (I) because of the absence of resonance implication such as in (II) and (III), lack of heavy-atom influence as in (IV), and inability to form hydrogen bonds, whether inter- or intramolecular, as in (V).

Crystal data:— $C_7H_5N_3O$, $M = 147\cdot1$, orthorhombic, $a = 14\cdot280$, $b = 12\cdot786$, $c = 7\cdot757$ Å, U = 1416 Å³, $D_c = 1\cdot38$, Z = 8, space group Pbca (D_{2h}^{15} , No. 61) by systematic absences, four-circle diffractometer⁹ data, 841 reflexions with $F_0 > 2 \sigma$ (counting statistics). Structure solution by symbolic addition method, least-squares refinement with anisotropic parameters, $R \ 6\cdot5\%$.

C(2) 130

FIGURE. Bond lengths and angles in 3-azidotropone (e.s.d. 0.009 Å). Deviations of atoms from the least-squares plane defined by atoms C(2)-C(7) are given in hundredths A.

J.C.S. CHEM. COMM., 1972

The molecule (see Figure) is planar within the estimated standard deviations of the ring carbon atoms. The bond lengths vary, however, between 1.327 and 1.448 Å (e.s.d. 0.009 Å). The ring exhibits, to a close degree, mm symmetry although the azido-group does introduce a small, though noticeable, perturbation of this symmetry. The azido-group is not coplanar with the seven-ring, no doubt due to the unfavourable N-H contacts which would then arise and this non-planarity suggests that the azido-group is not conjugated with the π -system of the ring. The shape and linear dimensions of the azido-group are similar to a previous determination.¹⁰ The inequality of the angles C(2)-C(3)-N(1) and C(4)-C(3)-N(1), 122 and 109°, respectively, is presumed due to steric effects.

(Received, December 1st, 1971; Com. 2057.)

- ¹ T. Hata, H. Shimanouchi, and Y. Sasada, Tetrahedron Letters, 1969, 753.
- ² H. Shimanouchi, T. Hata, and Y. Sasada, Tetrahedron Letters, 1968, 3573,
- ³ K. Kimura, S. Sazuki, M. Kimura, and M. Kubo, J. Chem. Phys., 1957, 27, 320.

- ⁴ E. J. Forbes, M. J. Gregory, T. A. Hamor, and D. J. Watkin, *Chem. Comm.*, 1966, 114.
 ⁵ H. Shimanouchi and Y. Sasada, *Tetrahedron Letters*, 1970, 2421.
 ⁶ (a) D. J. Bertelli and T. G. Andrews, jun., *J. Amer. Chem. Soc.*, 1969, 91, 5280; (b) D. J. Bertelli, T. G. Andrews, jun., and P. O. Crews, J. Amer. Chem. Soc., 1969, 91, 5286. ⁷ M. J. S. Dewar and N. Trinajstić, Croat. Chem. Acta, 1970, 42, 1. ⁸ M. J. Barrow and O. S. Mills, personal communication.

- ¹ D. B. G. Edwards, K. Bowden, J. Standeven, and O. S. Mills, Computer Bulletin, 1966, 10, 54.
 ¹⁰ A. Mugnoli, C. Mariani, and M. Simonetta, Acta Cryst., 1965, 19, 367.